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Numerical results on thermally driven nonlinear magnetoconvection in a rapidly
rotating fluid spherical shell are reported. A uniform magnetic field that is parallel to
the rotation axis is imposed externally. The Ekman number is 2 × 10−6, representing
a state of negligible viscosity, as in the Earth’s core. The convection pattern is
characterized by a few large-scale vortex columns superimposed on a fast westward
(retrograde) zonal flow. In the equatorial region, an anticyclonic vortex is intensified,
in which an induced axial magnetic field is stored. Interaction between the magnetized
vortex and the zonal flow leads to a thin jet at the western side of the vortex. The
jet is also characterized by a thin electric current sheet caused by a steep gradient of
the axial magnetic field. Because of this structure, the jet region can be designated
as a magnetic front by analogy with fronts in mid-latitude atmospheric cyclones. It
can be estimated from an order-of-magnitude analysis that the jet width decreases in
inverse proportion to the zonal flow speed, and that the jet speed and the sheet-like
electric current are proportional to the square of the zonal flow speed.

1. Introduction
Convection in the Earth’s liquid core has distinctive features originating from its

spherical geometry, self-gravitation, rapid rotation and high electrical conductivity,
which are all indispensable ingredients of the process of magnetic field generation
(a geodynamo). To elucidate such geodynamic phenomena, including convection
in planetary cores, self-excited magnetohydrodynamic dynamos in rotating spheres
have been studied using three-dimensional numerical simulations (e.g. Glatzmaier
& Roberts 1995; Kuang & Bloxham 1997). Convection in the presence of an
applied magnetic field (magnetoconvection) in rotating spherical geometry has also
been investigated using linear (Fearn 1979; Zhang 1995; Walker & Barenghi 1997;
Sakuraba 2002) and nonlinear calculations (Olson & Glatzmaier 1995; Sarson et al.
1997; Walker & Barenghi 1999; Sakuraba & Kono 2000), which provides a more
fundamental understanding. This paper follows the latter path.

It was recognized in these studies that the Ekman number

E =
ν

2ΩR2
0

, (1.1)

representing the ratio of viscous to Coriolis forces in the equation of motion, is an
important non-dimensional parameter, where Ω is the angular velocity of the core, R0

its radius and ν its kinematic viscosity. A realistic value of E in the Earth is O(10−9),
even with a turbulent viscosity. In most direct numerical simulations of Earth-type
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dynamos or magnetoconvection, however, the Ekman numbers are not smaller than
10−5. Some authors have implemented models with smaller values but assuming
hyperviscosity to artificially damp small-scale flows, or some kind of symmetry in
numerical solutions (see reviews by Zhang & Schubert 2000; Kono & Roberts 2002).
Without the restrictions of spherical geometry or a magnetic field, convection at
Ekman numbers less than 10−5 has been realized by recent numerical (Stellmach &
Hansen 2004) and experimental studies (Aubert et al. 2001; Sumita & Olson 2003).

How small an Ekman number is sufficient to represent a convective state of the
Earth’s core? The answer is complex. In a rapidly rotating system, an increase in
a magnetic field makes the viscous force unimportant, except in various thin shear
layers, because the Lorentz force due to an induced electric current can play the role
of the viscous force. In such a strong-field state, therefore, the convection pattern is
invariant with a change of E by definition. In a rapidly rotating system there are
disparities between its strong-field and weak-field limits (Zhang & Schubert 2000).
A remarkable feature might be that the ratio of magnetic to kinetic energy densities
increases in proportion to E−1 in the strong-field limit, but it is constant in the weak-
field limit. In the former case, a flow is constrained by Lorentz and Coriolis forces,
but it remains unclear what kind of flow pattern occurs. In most previous direct
numerical simulations, this energy ratio does not exceed 100 and is typically around
O(10), whereas it reaches several thousand or greater in the Earth’s core. It has
been inferred from studies of simplified magnetoconvection in spherical geometries
(Dormy, Cardin & Jault 1998; Sakuraba 2002) that an Ekman number of O(10−5) is
insufficiently small. It should be at least O(10−6) to achieve a convective regime of
negligible viscosity such that the disparities become clearer.

In this study a nonlinear calculation of rotating spherical magneto-
convection is carried out for a parameter space of E = O(10−6), smaller by one
order of magnitude than the previous studies, which we hope is a first step towards
extracting some fundamental features inherent to low-E magnetoconvection. As in
Sarson et al. (1997) and Sakuraba & Kono (2000), a uniform magnetic field parallel
to the rotation axis is applied externally so that a magnetohydrodynamic interaction
ensues at a moderate Reynolds number. The uniform field is not merely simple,
it is also force-free and represents a crude approximation of the Earth’s poloidal
(dipole) field. In other studies, a toroidal (azimuthal) field has been preferred as the
basic field. However, toroidal and poloidal fields are coupled inside the core so that
a seed magnetic field can be either toroidal or poloidal provided its pattern and
amplitude are appropriate. A toroidal basic field causes magnetic instability under
some conditions (Fearn 1979), making it difficult to investigate the thermally driven
magnetoconvection that this paper is intended to examine.

An important parameter of rotating magnetoconvection is the Elsasser number

Λ =
σB2

0

2ρΩ
, (1.2)

where B0 is the characteristic intensity of the basic field, σ is the electrical conductivity
and ρ is the fluid density. According to linear studies (e.g. Fearn 1979), the critical
Rayleigh number at the onset of thermally driven magnetoconvection decreases with
increasing Λ; it reaches an overall minimum when Λ = O(1). This behaviour is also
shown in the present configuration, where the basic field is uniform and parallel to
the rotation axis and the axes of convection rolls are also almost parallel to them
(Sakuraba 2002). Nonlinear studies (Cardin & Olson 1995; Olson & Glatzmaier 1995;
Sakuraba & Kono 2000) show that the convection type changes dramatically between
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the cases of Λ < 1 (a weak-field state) and Λ > 1 (a strong-field state). In the Earth’s
core, the Elsasser number is inferred to be of order unity if B0 is the self-excited
magnetic field intensity. These facts indicate that a convective system naturally reaches
a state in which the Elsasser number of the induced magnetic field becomes O(1) and
the Lorentz and Coriolis forces are basically balanced. To elucidate such a strong-field
state, we specifically examine the case of Λ = 1 in this paper.

2. Model
The model consists of a spherical shell (outer core) that is filled with an electrically

conductive Boussinesq fluid and of an insulating medium outside it, comprising a
mantle and inner core. The core is spun with a constant angular velocity Ωez and
is permeated by a uniform magnetic field B0ez, where ez is the unit vector along the
z-axis and co-rotation of the mantle and the inner core is assumed. We simulate three-
dimensional time-dependent thermal convection by solving the following equations:

Em

∂u
∂t

= E∇2u + Emu × ω − ∇
(
p + 1

2
Emu · u

)
+ u × ez + J × B + qRaT r, (2.1)

∂ B
∂t

= ∇2 B + ∇ × (u × B), (2.2)

∂T

∂t
= q∇2T − u · ∇(T + T ), (2.3)

and ∇ · u = ∇ · B = 0. They are in a reference frame rotating with the core, where
u, B, ω = ∇ × u, J = ∇ × B, p and T are, respectively, the velocity, magnetic field,
vorticity, electric current density, and pressure and temperature perturbations from a
hydrostatic state in which the temperature is T = 1/r and the fluid rotates rigidly. The
equations are non-dimensionalized with characteristic scales of length R0, time R2

0/η,
velocity η/R0, magnetic field (2ρΩµ0η)1/2, temperature βR0 and pressure 2ρΩη, where
η =1/(µ0σ ) is the magnetic diffusivity, µ0 is the magnetic permeability and β is the
gradient of temperature at the core–mantle boundary (CMB) in the hydrostatic state.
The non-dimensional velocity and magnetic field respectively represent the magnetic
Reynolds and Elsasser numbers with this scaling. The (modified) Rayleigh number
Ra = αβg0R

2
0/(2Ωκ), the magnetic Ekman number Em = η/(2ΩR2

0) and the diffusivity
ratio q = κ/η are derived as non-dimensional parameters in addition to E, where α

is the thermal expansivity and κ is the thermal diffusivity. The acceleration due to
gravity is g0 at the CMB and is assumed to be proportional to the distance from the
core’s centre.

The velocity satisfies rigid boundary conditions. The magnetic field is continuous
everywhere and connects to potential fields outside the core. The potential field far
from the core approaches the uniform axial field Λ1/2ez, where Λ is the Elsasser
number of the applied field. The temperature at the inner core boundary is fixed to
an initial value, whereas the heat flux is laterally homogeneous at the CMB. The
mean temperature at the CMB is fixed to maintain a constant temperature difference
across the fluid shell. Therefore, the heat flux across the CMB increases because of
convective heat transport. The velocity and the magnetic field are decomposed into
poloidal and toroidal fields. Equations governing the defining scalars of the poloidal
and toroidal fields in addition to (2.3) are reduced to a system of ordinary differential
equations using a spectral method based on spherical harmonic and Chebyshev
expansions, with the pressure term eliminated by taking the curl of (2.1). Time-
stepping is employed using a predictor–corrector method with diffusion terms treated
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Figure 1. The induced magnetic energy (solid line) and kinetic energy (broken line) stored in
the fluid shell plotted as functions of time.

by an implicit Crank–Nicolson method. We specifically examine a parameter set
E = Em = 2 × 10−6, Ra = 200, q = 1 and Λ =1 in this paper, with a non-dimensional
inner core radius of 0.35. Although the magnetic Prandtl numbers Pm = E/Em and
q are both small in the Earth’s core, they are set to unity so that a magnetic field
can be induced by moderate convective motion. The maximum degree and order of
the spherical harmonics are both 159 and the maximum degree of the Chebyshev
polynomials is 96.

A linear stability calculation (Sakuraba 2002) predicts that the critical Rayleigh
number for this parameter set is 150. The even modes of m =0 and 1 and the odd
modes of 0 � m � 2 both give approximately this critical Rayleigh number, where
m is the azimuthal wavenumber and the even (odd) mode is characterized by radial
velocity symmetric (antisymmetric) with respect to the equatorial plane (z = 0) and by
a magnetic field with axial dipole (quadrapole) symmetry. The linear calculation also
predicts that, in the absence of the magnetic field, the most unstable mode is an even
mode of m =24 and the critical Rayleigh number is 330, indicating that the system
would be stable without the magnetic field. This is the reason why magnetoconvection
is studied in this paper despite the same computational complexity as in self-exciting
dynamos. We can avoid high Rayleigh numbers and observe magnetohydrodynamic
interactions in well-controlled conditions.

3. Results and interpretation
3.1. Overview of convective structure

Calculation is begun from the initial condition that the temperature perturbation
is random and of small amplitude. Only even-mode perturbations grow selectively;
the resultant solution has even-mode (dipole) symmetry. At a quasi-steady state, the
induced magnetic energy density, 1

2
E−1

m |B − Λ1/2ez|2, is, on average, more than 50

times greater than the kinetic energy density, 1
2
|u|2 (figure 1). This implies that a

magneto-geostrophic balance among Coriolis, Lorentz, pressure and buoyancy forces
is well-established.

Figure 2(a) shows a snapshot of fluid motion in the equatorial plane at the time
when an unusual flow structure emerges (t = 0.12). The velocity field around the inner
core is dominated by a westward (retrograde) zonal flow prevailing up to around the
mid-depth of the fluid shell. The outer part of the shell has nearly stationary vortices.
The zonal flow has a wave-like structure with large scales that resemble westerlies in
the atmosphere. The most striking feature is that a strong inward-flowing jet forms
on the downstream side of a bulge of the wave-like zonal flow. One noteworthy jet is
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Figure 2. (a) A convection pattern on the equatorial plane viewed from the north (z > 0).
The axial vorticity ωz is represented as a colour map and the velocity u by instantaneous
streamlines starting from dots. The colour of the streamline indicates the flow speed, whereas
its length is arbitrary. (b) The electromagnetic field pattern corresponding to (a). The axial
magnetic field Bz is shown by a colour map and the electric current J is shown by streamlines.

Figure 3. An oblique view of the northern half of the fluid shell at the same time as
figure 2. Shoehorn-like pink and light blue objects respectively depict the isosurfaces of
(u2

s + u2
φ)1/2 = 400 and uz = 200, where (s, φ, z) are the cylindrical coordinates. The colour

of the equatorial plane shows the temperature perturbation (red for T � 1 and blue for
T � −1) and arrows represent the velocity field. The jet shown in figure 2(a) corresponds to
the equatorial section of the pink isosurface. Magnetic field lines are drawn from dots and
their intensity is designated by colours (red for |B| � 4 and blue for |B| = 0). The dots are
spaced equally on a vertical plane that is 0.6 from the z-axis. The inner core is shown as a
grey hemisphere.
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illustrated in figure 2(a) by red streamlines on a pair of adjacent narrow
vorticity bands. The maximum Reynolds number is greater than 750 at the centre of
the jet. Figure 2(b) depicts the electromagnetic field at the same time as figure 2(a).
It is apparent that the axial magnetic field is intensified considerably at the east of
the jet. At the same place as the inward flowing jet, there is a strong jet-like electric
current, which is shown as red lines with opposite direction to that of the fluid jet.
The peak electric current density is greater than 100 at that moment.

The jet structure extends in the z-direction to around |z| < 0.3, as shown in figure 3.
The horizontal component (us , uφ) is dominant in the jet region, but vertical flows
(uz) are not negligible at some distance from the equatorial plane, where (us, uφ, uz)
are the velocity components in the cylindrical coordinates (s, φ, z). It is noteworthy
that a gap exists between the centres of the horizontal and vertical jets, which will
be discussed later. The jet drifts westward and its strength exhibits an intermittent
behaviour, as shown in figure 4. In this paper, a flow structure is designated as a
jet only when the velocity is higher than 500 and the electric current density, which
is antiparallel to the velocity vector, is greater than 80. With these criteria, jet-like
structures are found at t = 0.120, 0.129 and 0.145 in figure 4. The jet lifetime is
typically 0.003 in non-dimensional units and its retrograde angular velocity is about
2π/0.02 = 310 rad per unit time. In the following subsections, a possible mechanism
of the formation of this unusual jet is described in detail.

3.2. Zonal flow

The westward zonal flow circulating around the inner-core equator can be interpreted
as a thermal wind. A hot plume rises from the inner-core equator and warms the
equatorial part of the fluid shell. Four plumes are visible in figure 2, but their shape
is severely changed by the zonal flow. When averaged in the azimuthal direction, the
equatorial plume is followed by poleward flows beneath the CMB and equatorward
counterflows along the cylindrical surface tangent to the inner-core equator (figure 5).
These meridional circulations inevitably create a zonal flow in the equatorial part of
the shell so that the inward Coriolis force balances the outward buoyancy force.

On the equatorial plane, the axial and azimuthal components of the vorticity
equation (the curl of (2.1)) are reduced to

Em

(
∂ωz

∂t
+ u · ∇hωz

)
+ J · ∇hBz = (1 + Emωz)

∂uz

∂z
+ Bz

∂Jz

∂z
− qRa

∂T

∂φ
, (3.1)

0 = (1 + Emωz)
∂uφ

∂z
+Bz

∂Jφ

∂z
+ qRa

∂T

∂z
, (3.2)

and those of the induction equation (2.2) are

∂Bz

∂t
+ u · ∇hBz = Bz

∂uz

∂z
+ ∇2Bz, (3.3)

0 = Bz

∂uφ

∂z
+ ∇2Bφ, (3.4)

where ∇h = es(∂/∂s + s−1) + eφs
−1∂/∂φ. Here, we have assumed that the solution

belongs to an even mode and that the viscous force is negligible. These equations are
also approximately valid in the vicinity of the equatorial plane. A well-known thermal
wind relationship is derived from (3.2) if the nonlinear and the Lorentz force terms
are neglected. In general, the relationship can be written as

∂uφ

∂z
− qRa

∂T

∂θ
= 0, (3.5)
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Figure 4. (a) The horizontal flow amplitude ((u2
s + u2

φ)1/2) and (b) the vertical magnetic field
(Bz) on z = 0 and s = 0.675 are shown by grey shades as functions of longitude and time. A jet
is visualized by a black band in (a). It is apparent that the jet is located at the western edge
of a magnetic field maximum and moves westward.

Velocity
c = 20 = 20

Electric current

c = 3 = 10
Magnetic field
c = 0.2 = 3

Temperature

c = 0.1

Figure 5. The velocity, electric current, magnetic field and temperature averaged both in time
and longitude. The temperature and the zonal components of the vector variables are plotted
by contour maps on the meridional plane with solid lines representing positive values. The
arrows represent meridional components. In each panel, the contour interval c and the value
corresponding to a unit arrow length are shown.
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where θ denotes the colatitude in the spherical coordinates. Figure 5 depicts ∂T /

∂θ � 0.8/(π/4) � 1 and ∂uφ/∂z � 120/0.5 = 240 in the central part of the meridional
section, which agrees with the fact that qRa = 200 in this simulation. Zonal flows are
similarly found in other calculations of Earth-type dynamos and magnetoconvection
(e.g. Olson & Glatzmaier 1995; Kuang & Bloxham 1997). The mechanism has also
been recognized to be a thermal wind and the magnetic effect of less importance in
the azimuthally averaged equation of motion (Aubert 2005).

Variation of the mean zonal flow in the presence of an axial magnetic field creates a
toroidal magnetic field, as predicted by (3.4). That generation mechanism is known as
an ω-effect and is readily apparent in figure 5. Figure 3 also illustrates how magnetic
field lines are advected and distorted as a result of the shear of the zonal flow. The
azimuthally averaged meridional flows and electric currents are almost antiparallel as
shown in figure 5, reflecting the balance between the zonal components of the Coriolis
and Lorentz forces in a magneto-geostrophic state. In fact, those vectors are exactly
antiparallel if the magnetic field is axial and uniform. Note that the direction of the
electric current depends on the applied field; it would be parallel to the velocity field
if the applied field were −Λ1/2ez.

3.3. Magnetic field generation and hollow vortex

The first term in the right-hand side of (3.3) is a stretching term to intensify the
axial field near the equatorial plane. Assuming a geostrophic balance, one can relate
this term to ∂T /∂φ from (3.1). A hot plume upwelling from the inner-core equator
produces a temperature difference ∂T /∂φ > 0 in its west side, where an anticyclonic
vortex (ωz < 0) exists. Consequently, the axial magnetic field is intensified at the
anticyclonic vortex near the equatorial plane (Kageyama et al. 1995). This tendency
is also apparent in results obtained in this paper (see figures 2 and 3).

The negative vorticity is noticeably concentrated in a thin narrow area, whereas
the magnetic field maximum (located in the eastern side of the jet) is rather broad.
We consider this discrepancy to be related to a hollow vorticity structure in an
anticyclone, as reported by Ishihara & Kida (2002). The mechanism of formation of
the hollow anticyclone has not yet been explained quantitatively, but it can be roughly
interpreted as follows. The concentrated axial magnetic fluxes push the surrounding
fluid outward because of the Lorentz force that is diametrically opposite to the
Coriolis force in the anticyclone. It is well known that the presence of a magnetic field
considerably reduces the critical Rayleigh number for the onset of rotating thermal
convection and enlarges the cell size (Chandrasekhar 1961). This effect is also relevant
in the present case, in which a uniform axial basic field is applied to a rotating fluid
sphere (Sakuraba 2002). A conventional explanation for it is that the Coriolis force,
which typically suppresses convection, is partly cancelled by a Lorentz force. In a
rotating spherical convection with an even-mode symmetry, a balance is established
in the equatorial part of the anticyclonic vortex. In consequence, the anticyclonic fluid
circulations dominate over a large area and play the most important role in heat
transport (Sakuraba & Kono 1999, 2000). Because a conducting fluid cannot easily
flow across lines of magnetic force, the fluid circulates around the rim of the large
magnetized anticyclone and a stagnant hollow emerges at the centre. The magnetic
field inside broadens as a result of magnetic diffusion.

3.4. Formation of the jet and current sheet

The jet-like structure would not be apparent if the angular velocity of the westward
zonal flow were constant and it had no shear in the s-direction. The situation
considered here is that the zonal wind is westward near the inner-core equator, whereas
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it is eastward in the outermost part of the core (figure 5). Therefore, temperature
and magnetic fields, and also a vorticity field that is linked to them, are advected
in a complicated manner. Figure 4 illustrates an almost stationary trend and fast
westward drifting of velocity and magnetic field patterns, reflecting the coexistence
of the stagnant part near the CMB and the fast thermal wind circulating around the
inner-core equator.

The magnetic flux lines around the equatorial plane are confined in an enlarged
anticyclone, as described in previous subsections, and are advected westward with
it. In the course of this process, the magnetized anticyclone collides with an almost
stationary unmagnetized (cyclonic) vortex that exists in the outer part of the fluid
shell. The magnetic field is ‘dammed’ at the collision boundary because of weak
magnetic diffusion compared to the effect of advection. Then, the intensity of the
axial magnetic field changes drastically across the boundary and an electric current
sheet forms there. The concomitant Lorentz force is balanced partly by an inertial
force but mainly by a Coriolis force, which is provided by the formation of a strong
jet parallel to the current sheet.

The process of jet formation described above is apparent in figure 4. At t = 0.12, for
example, two Bz maxima merge and then a jet-like flow ensues. Detailed examination
of this process reveals that the leading Bz maximum slows (the collision process) and
is caught by with the following weak Bz maximum (the damming effect). The electric
current sheet and the fluid jet simultaneously form and move westward with nearly
the same speed as the thermal wind when the magnetic field becomes sufficiently
strong. This feature is commonly seen in other cases.

Figure 6 illustrates a local structure of the jet on the equatorial plane. The axial
magnetic field increases suddenly in the jet region; subsequently, it becomes gradually
decreasing function of longitude in the upstream side. Because of this field pattern, the
jet can be designated as a magnetic front by analogy with a front in a mid-latitude
cyclone, where hot and cold air masses collide and a steep temperature gradient
occurs. The electric current vector (black arrows) flips at the front and a sharp
increase of its magnitude is observed. The velocity field tends to be antiparallel to the
electric current so that the Lorentz force is balanced by the Coriolis force.

The axial components of the velocity and the electric current also have a tendency
to be opposite, as is indicated by figure 6(b). The jet away from the equatorial plane
(vertical jet) originates from an already existing axial flow inside the anticyclone,
which stretches and concentrates the axial magnetic field there (see § 3.3). At the
time when the electric current sheet and the jet form because of the collision of
the vortices, the axial flow is pushed against the magnetic front. In this process, the
magnetic force plays an important role. As described in § 3.2, there exists a prograde
zonal magnetic field in the northern hemisphere because of the ω-effect. The thin
jet stretches the zonal field to create locally antiparallel radial magnetic fields. That
is, in the northern hemisphere, the jet pulls the magnetic field Bφ > 0 so that an
inward radial magnetic field Bs < 0 is induced in the western side of the jet and an
outward field Bs > 0 is induced in the eastern side. Consequently, a sheet-like vertical
(equatorward) electric current forms at almost the same place as the magnetic front.
This can also be understood as an electric current induced by the u × B field, where
u is the jet velocity and B is the zonal field. The balance between the Lorentz and
the Coriolis forces near the equatorial plane yields the coexistence of uz and Jz (see
(3.1)). Therefore, the axial flow is forced to be localized at the magnetic front, and the
vertical jet ensues. It should be noted that the vertical flow away from the equatorial
plane induces Bz (see (3.3)) and sustains the jet structure itself. That is, the horizontal
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Figure 6. (a) The axial magnetic field (Bz; solid line) and the temperature perturbation (T ;
broken line) on z = 0 and s = 0.675 and at t = 0.12 are shown as functions of longitude.
(b) Similarly, ∂uz/∂z (solid line), Bz∂Jz/∂z (broken line) and (c) ωz are shown. (d) Velocity and
electric currents parallel to the equatorial plane on the same traversing line are represented
respectively by white and black arrows. The horizontal and vertical projections of each arrow
respectively represent its φ and s components. The grey part roughly represents the jet region.

and vertical jets and the electric current sheet in the presence of the axial and zonal
magnetic fields comprise a self-sustaining system that maintains the frontal structure.
For this reason, the jet continues for some time (figure 4).

Figure 6(a) shows that the temperature does not exhibit a sudden change at
the magnetic front, indicating that the jet is not of thermal origin, but rather of
electromagnetic origin. This fact can be verified by the variation pattern of the axial
vorticity. Figure 6(c) indicates that ωz is generated not by a thermal torque, but by a
magnetic one (see (3.1)).

The hollow anticyclonic vortex has a noteworthy intrinsic characteristic: it is
accompanied by a circulating flow that is localized on its outer rim. The circulating
flow on the downstream side is amplified because of the relative growth of the
magnetic field if the magnetic field stored in the flow is advected in the presence of
a fast zonal wind. On the other hand, it is weakened on the upstream side because
the magnetic field is advected away. The jet formation can be also interpreted as
an asymmetric growth of the magnetized hollow anticyclone caused by its nonlinear
interaction with a fast zonal wind.

In this calculation, the viscous force is unimportant, even in the thin jet; its
magnitude is less than 3% of the Lorentz force magnitude. It is generally found that
the Lorentz force has half the magnitude of the Coriolis force at the magnetic front.
The remaining part is balanced mainly by pressure and buoyancy forces and partly
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Figure 7. Illustration of a magnetic front viewed from a reference frame moving with it. Grey
and white arrows respectively represent directions of flows and electric currents. The intensity
of an axial field Bz is expressed by the height of the solid object. The jet region (divided into
A and B) is shown by rectangular boxes bordered with broken lines. The thermal wind Utw is
prograde (eastward) here because of the coordinate transformation.

by an inertial force, which is at most 10% of the Lorentz force. When velocity and
magnetic fields change with amplitudes U and B respectively, and with a common
length scale L, the ratio of the inertial force to the Lorentz force can be written as

|Em(u · ∇)u|
| J × B| � EmU 2/L

B2/L
=

1
2
U 2

1
2
E−1

m B2
, (3.6)

which is equal the ratio of non-dimensional kinetic to magnetic energy densities. This
quantity is much smaller than unity if averaged in the whole core (see figure 1). Even
in the narrow jet, it is only 0.1 if we take U = 700 and B = 3 as typical values. When a
magnetized anticyclone collides with an unmagnetized vortex and a steep gradient of
the magnetic field emerges, the Lorentz force perpendicular to the collision boundary
produces a jet along the boundary because there are no strong inertial and viscous
forces. Only the Coriolis force acts to oppose the Lorentz force. We can conclude that
the reduction of inertial and viscous forces in a system of low E is one cause of the
jet formation.

3.5. Estimate of the frontal structure

The magnetic front moves westward at an equal or lower speed than the thermal wind
velocity Utw. As shown in figure 2, the thermal wind blows onto the front and makes
a right-angled turn there to form a narrow jet toward the inner core. Because the
magnetic front does not extend in the radial direction, its phase velocity differs slightly
from Utw. In any case, it appears as if there is an invisible wall along the magnetic
front at which the thermal wind changes its direction. When viewed from a reference
frame moving with the magnetic front, the jet structure is nearly time-independent, as
portrayed in figure 7. For the sake of simplicity, let us assume that the magnetic front
is exactly radial (parallel to es) and that its phase velocity coincides with Utw. The jet
is conceptually separable into two parts. In the eastern side (region A), the magnetic
field stretching due to of the vertical jet Uz compensates diffusion due to the sharply
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varying magnetic field Bz. Note that the location of the vertical jet differs slightly
from the maximum of the horizontal component Ujet, as shown in figures 3 and 6.
In the western side (region B), on the other hand, the magnetic diffusion balances
advection of the axial field. Assuming a sinusoidal variation of Bz in the magnetic
front, one obtains from (3.3) that

Bz

Uz

Hjet

� π2Bz

2δ2
jet

, Utw

πBz

2δjet

� π2Bz

2δ2
jet

(3.7)

in regions A and B, respectively, or

δ−1
jet � 1

π

√
2Uz

Hjet

� Utw

π
, (3.8)

where δjet is the half-width of the jet region and Hjet is the height. Substituting
Utw = 180 and ∂uz/∂z � Uz/Hjet = 4000 gives δjet = 1/30–1/60 (see figure 6). This
value is comparable with the observational value δjet = 1/40, the difference being
caused by horizontal advection of a magnetic field along the jet. Note that Hjet in
this estimation is about 0.05 because uz grows sharply near the equatorial plane.
Therefore, there would be a difference from the height of the jet in the usual sense
(see figure 3). Taking account of mass conservation

UtwHjetDjet � UzδjetDjet +UjetδjetHjet, (3.9)

one can obtain proportionality relations

δjet ∝ U−1
tw , Ujet ∝ DjetU

2
tw, Uz ∝ HjetU

2
tw, (3.10)

where Djet is the depth of the jet region. Because these estimates are derived without
considering equations of motion and heat transport, the values of Utw and Bz cannot
be obtained. Nevertheless, relations (3.10) are useful for estimating the jet structure
based on a zonal flow speed.

One might imagine a jet in the Earth’s core if the structure of the magnetic front
were universal in low-E magnetoconvection. The flow in the Earth’s core has been
estimated through theoretical, experimental and observational studies (e.g. Aurnou
et al. 2003; Hulot et al. 2002). Nevertheless, it is still difficult to evaluate its speed in
the deep part of the core. Taking Utw = 103 (or 0.58 mm s−1 if using R0 = 3480 km and
η = 2 m2 s−1 as the Earth’s parameters) for instance, about 6 times faster than this
simulation result, in which Utw � 180, δjet � 1/40 and Ujet � 700, and assuming that
Hjet and Djet are unchanged in all cases, one can obtain a jet of width δjetR0 = 15 km
and of speed Ujetη/R0 = 1.2 cm s−1 in the Earth’s core. This speed is tens of times
faster than usually conjectured. Of course this estimation relies on the assumption
that the jet observed in this study is not controlled by viscosity at all, and that it is
found in an asymptotic regime of low-E magnetoconvection. Detailed discussion of
jets in the Earth’s core is therefore beyond the scope of this study.

3.6. Calculation varying other parameters

A numerical simulation is carried out with the same parameters, but Λ = 0.2.
The critical Rayleigh number becomes greater than 300 for this parameter set.
Nevertheless, finite-amplitude convection occurs because a numerical solution for
the previous run at Λ = 1 is used as the initial condition. As shown in figure 8,
the convection flow after saturation is slightly suppressed compared to the case of
Λ =1. No strong and narrow jets occur during the simulation period. In figure 8,
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    = 250

(a) Λ = 0.2 (b) Λ = 1

Figure 8. Axial magnetic fields (contours) and velocities (arrows) on the equatorial plane at
(a) Λ= 0.2 and (b) Λ= 1, the latter being a snapshot at t = 0.145. The contour interval is 0.5;
a unit arrow length (shown in the title) corresponds to |u| = 250.

two notable upwelling plumes issue from the inner-core surface. The axial magnetic
field is intensified at the west side of each plume. Downward (us < 0) plumes from
the CMB are also found. Clockwise (anticyclonic) circulations superimposed on a
westward zonal flow are evident with the magnetic field concentrated there. Although
this is a similar characteristic to the previous simulation, an important difference is
that stationary vortices beneath the CMB are absent because the westward zonal flow
is developed in the entire the equatorial plane. Hence, the magnetic field concentrated
in the anticyclone is advected monotonically, which means that no collision occurs
between vortices and its steep gradient in the west side of the anticyclone. This is a
possible explanation for the reduction of the downward jets.

In conclusion, an electric current sheet requires a steep gradient of an axial magnetic
field that is caused by the collision of a magnetized anticyclonic vortex with an
unmagnetized cyclone in the equatorial region. The Lorentz force normal to the
current sheet is balanced by the Coriolis force that is produced by a narrow jet
parallel or antiparallel to the electric current. Formation of a thinner jet depends on
the relative velocity of the vortices.

4. Concluding remarks
The jet described in this paper is found to result from nonlinear interactions

between a westward zonal flow and a hollow anticyclone in which an axial magnetic
field is concentrated. Suppression of inertial and viscous forces in the presence of
the prominent effect of Coriolis and Lorentz forces is important for jet formation.
Zonal flows are also found in numerical models of self-exciting Earth-type dynamos
and are regarded as a thermal wind that depends on the ratio of the rotation rate
and the buoyancy flux, not on diffusivities or magnetic fields (Aurnou et al. 2003),
giving grounds for expecting the existence of magnetic fronts in self-exciting (non-
magnetoconvective) dynamos. In the Earth’s core, the flow is inferred to be highly
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turbulent with some degree of odd-mode symmetry. Although the turbulence in the
Earth’s core is also a central issue to be investigated, in this study arguments have
benefited from a logical leap in considering magnetic fronts in the real Earth: the idea
of a magnetic front presented herein assumes that a large-scale magnetized anticyclone
with even-mode symmetry collides with a stationary cyclone. Future studies should
elucidate whether the frontal structure is universal, even in the Earth’s turbulent state.
Those studies should also elucidate whether the physical process, as illustrated in
figure 7, is part of the self-sustaining geodynamo.

The jet observed in this paper extends in the axial direction to around |z| < 0.3,
as seen in figure 3, but not to the outer boundary of the fluid shell. Therefore, we
cannot see a sharp variation of the magnetic field from outside the core. However, the
situation might be different if the jet were thinner and more rapid, as expected under an
Earth-like condition. It would also be interesting to investigate what type of magnetic
field pattern and variation is observed at the Earth’s surface when the jet structure
emerges. The jet involves high-Reynolds-number flows. Therefore, its stability is also
a concern. In our other simulation result, a jet-like flow triggered a breakdown
of the even-mode symmetry of the convection pattern. This breakdown might be
of particular importance in considering a temporal change of the geomagnetic field
because an axial flow penetrating the equatorial plane, which belongs to an odd-mode
symmetry, is thought to be related to excursions and polarity reversals (Li, Sato &
Kageyama 2002).

A similar jet was shown in laboratory experiments on rotating non-magnetic
thermal convection in a hemispherical shell driven by heterogeneous cooling from
outside (Sumita & Olson 1999, 2002). In those experiments, a prograde flow was
induced by local cooling at the CMB and a sharp front formed in the downstream
side, thereby separating cold and hot regions in the fluid shell. A narrow jet flows
from the outer to inner boundaries along the front. Its speed and width are estimated
respectively as ∼ 1 cm s−1 and ∼ 2 km for the Earth. This jet is of thermal origin.
Nevertheless, its speed and width are very similar to our results because both systems
are fundamentally governed by an advection–diffusion equation with a strong zonal
flow. When a magnetic field is imposed on this system, it is probable that a magnetized
anticyclonic vortex is created in the eastern side of the front and the jet is modified by
an induced magnetic field. Olson & Glatzmaier (1996) considered magnetoconvection,
driven by heterogeneous heat flows on the CMB. That study found no frontal
structures, probably because of the large Ekman number (2.1 × 10−4 in our definition).

Magnetohydrodynamic shear layers and jets are found in a spherical Couette
flow, with the outer spherical surface fixed and the electrically conductive inner core
rotating (Dormy et al. 1998; Hollerbach & Skinner 2001; Dormy, Jault & Soward
2002). When a strong magnetic field is imposed on this system, the angular velocity
of the fluid tends to be constant along a line of magnetic force (Ferraro’s law of
isorotation). The inner and outer spherical boundaries rotate with different angular
velocities. Therefore, a shear layer emerges between the region in which the field lines
cross both the boundaries and the region in which the field lines cross either inner or
outer boundaries. When an axial dipole field of internal origin is applied, for example,
a super-rotating (prograde) thin jet flows in the shear layer; that flow is attributable
to the Hartmann current circulating through the fluid spherical shell. In our case, a
sheet-like electric current also plays an important role in jet formation. However, the
super-rotating jet is peculiar to the case of an infinite Elsasser number, where the
Coriolis force is absent. These two jets differ markedly in the way that the Lorentz
force is balanced.
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Another example to be compared is a wall jet in a rotating fluid (Stern, Chassignet
& Whitehead 1997). This jet is injected mechanically from a point source on a vertical
wall. It flows along the wall to some distance accompanying two-dimensional small-
scale eddies, but it detaches abruptly from the wall, thereby producing a turbulent
plume that is normal to the wall. Although the jet is produced artificially in this
example, such an intrinsic property of a strong flow concentrated near a boundary
wall might give some insight into our jet because it tends to originate from the CMB
abruptly (see figure 8). It is noteworthy, however, that our jet is free from viscous
effects and is entirely different from the non-magnetic wall jet that is controlled by
viscosity.

The jet structure shown in figures 6 and 7 suggests behaviour corresponding to
a simple advection–diffusion equation like a one-dimensional Burgers equation with
small diffusivity. This interpretation might provide a simple and clear viewpoint, but
it is a broad one. This study revealed a significant effect of induction caused by a
vertical jet and the dominance of Coriolis and Lorentz forces over an inertial force,
which represent unique characteristics of the jet. It is noteworthy that the relative
importance of the inertial force to the Lorentz force is measurable using the ratio of
kinetic to magnetic energy densities as shown by (3.6); this ratio is proportional to
the (magnetic) Ekman number, provided that typical magnetic Reynolds and Elsasser
numbers are constants. Hence, the jet formation is peculiar to magnetoconvection in a
system of low Ekman number, probably 10−6 or lower, in which the magnetic energy
is intrinsically much greater than the kinetic energy. With a larger Ekman number,
we were unable to find a jet because of the growth of an inertial force, which would
smooth out the rapid jet-like flow.

The jet is so thin that it is difficult to have adequate spatial resolution in computer
simulations, which might be another reason why previous studies have not revealed
this phenomenon. The spatial resolution in this calculation is perhaps a minimum
requirement for simulating the jet (e.g. just a few Chebyshev collocation points exist
in the Ekman layer beneath the CMB). This study provides a concrete illustration
of fine structure in rotating magnetoconvection and suggests the importance of high-
resolution calculations in modelling the geodynamo.

Computer simulations were performed at the Earth Simulator Center, Japan Agency
for Marine-Earth Science and Technology. This study was partly supported by a JSPS
Grant-in-Aid for Scientific Research.
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